Total Pageviews

Monday, October 30, 2017

Formation of the Universe

The Big Bang Theory



The Big Bang theory is the most widely accepted cosmological explanation of how the universe formed. If we start at the present and go back into the past, the universe is contracting, getting smaller and smaller. What is the end result of a contracting universe? According to the Big Bang theory, the universe began about 13.7 billion years ago. Everything that is now in the universe was squeezed into a very small volume. Imagine all of the known universe in a single, hot, chaotic mass. An enormous explosion—a big bang—caused the universe to start expanding rapidly. All the matter and energy in the universe, and even space itself, came out of this explosion. What came before the Big Bang? There is no way for scientists to know since there is no remaining evidence.





Timeline of the universe measuring the big bang expansion over a time period of 13.7 billion years. The initial point of the universe began with quantum fluctuations and inflation. This was followed by the Afterglow light patter, which lasted approximately 380,000 years. There was a period of a darkness, and then the first stars appeared about 400 million years later. Since then, galaxies and planets have developed as dark energy has accelerated expansion.


After the Big Bang

In the first few moments after the Big Bang, the universe was unimaginably hot and dense. As the universe expanded, it became less dense and began to cool. After only a few seconds, protons, neutrons, and electrons could form. After a few minutes, those subatomic particles came together to create hydrogen. Energy in the universe was great enough to initiate nuclear fusion and hydrogen nuclei were fused into helium nuclei. The first neutral atoms that included electrons did not form until about 380,000 years later.The matter in the early universe was not smoothly distributed across space. Dense clumps of matter held close together by gravity were spread around. Eventually, these clumps formed countless trillions of stars, billions of galaxies, and other structures that now form most of the visible mass of the universe. If you look at an image of galaxies at the far edge of what we can see, you are looking at great distances. But you are also looking across a different type of distance. What do those far away galaxies represent? Because it takes so long for light from so far away to reach us, you are also looking back in time.




This illustration separates the XDF into three planes showing foreground, background, and very far background galaxies. These divisions reflect different epochs in the evolving universe. Fully mature galaxies are in the foreground plane that shows galaxies as they looked fewer than 5 billion years ago. The universe is rich in evolving, nearly mature galaxies from 5 to 9 billion years ago. Beyond 9 billion years the universe is awash in compact galaxies and proto-galaxies, blazing with young stars.




Dark Matter and Dark Energy    

The Big Bang theory is still the best scientific model we have for explaining the formation of the universe and many lines of evidence support it. However, recent discoveries continue to shake up our understanding of the universe. Astronomers and other scientists are now wrestling with some unanswered questions about what the universe is made of and why it is expanding. A lot of what cosmologists do is create mathematical models and computer simulations to account for these unknown phenomena, such as dark energy and dark matter.







Dark Matter

The things we observe in space are objects that emit some type of electromagnetic radiation. However, scientists think that matter that emits light makes up only a small part of the matter in the universe. The rest of the matter, about 80 percent, is dark matter. Dark matter emits no electromagnetic radiation so we can’t observe it directly. However, astronomers know that dark matter exists because its gravity affects the motion of objects around it. When astronomers measure how spiral galaxies rotate, they find that the outside edges of a galaxy rotate at the same speed as parts closer to the center. This can only be explained if there is a lot more matter in the galaxy than they can see.Gravitational lensing occurs when light is bent from a very distant bright source around a super-massive object. To explain strong gravitational lensing, more matter than is observed must be present. With so little to go on, astronomers don’t really know much about the nature of dark matter. One possibility is that it could just be ordinary matter that does not emit radiation in objects such as black holes, neutron stars, and brown dwarfs, objects larger than Jupiter but smaller than the smallest stars. But astronomers cannot find enough of these types of objects, which they have named MACHOS (massive astrophysical compact halo object), to account for all the dark matter, so they are thought to be only a small part of the total.Another possibility is that the dark matter is thought to be much different from the ordinary matter we see. Some appear to be particles that have gravity, but don’t otherwise appear to interact with other particles. Scientists call these theoretical particles WIMPs, which stands for Weakly Interactive Massive Particles.
Most scientists who study dark matter think that the dark matter in the universe is a combination of MACHOS and some type of exotic matter such as WIMPs. Researching dark matter is an active area of scientific research, and astronomers’ knowledge about dark matter is changing rapidly.


Dark Energy

Astronomers who study the expansion of the universe are interested in knowing the rate of that expansion. Is the rate fast enough to overcome the attractive pull of gravity?
· If yes, then the universe will expand forever, although the expansion will slow down over time.
· If no, then the universe would someday start to contract, and eventually get squeezed together in a big crunch, the opposite of the Big Bang.
Recently astronomers have made a discovery that answers that question: the rate at which the universe is expanding is actually increasing. In other words, the universe is expanding faster now than ever before, and in the future it will expand even faster. So now astronomers think that the universe will keep expanding forever. But it also proposes a perplexing new question: What is causing the expansion of the universe to accelerate? One possible hypothesis involves a new, hypothetical form of energy called dark energy. Some scientists think that dark energy makes up as much as 72 percent of the total energy content of the universe.

Pie chart with the following proportions: 74 percent dark energy, 22 percent dark matter, 3.6 percent intergalactic gas, and 0.4 percent stars, etc.







24 comments:

  1. kinda confuse about this before, thanks for this!

    ReplyDelete

What is Empowerment Technologies?

Empowerment Technologies is a  specialized module designed to provide  students with the foundation of  knowledge and skill needed to suc...